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Abstract

By virtue of two systems of vector functions and the propagator matrix method, Green’s functions for transversely
isotropic, piezoelectric functionally graded (exponentially graded in the vertical direction), and multilayered half spaces
are derived. It is observed that the homogeneous solution and propagator matrices for each functionally graded layer in
the transformed domain are independent of the choice of the two systems of vector functions. For a point force and
point charge density applied at any location of the functionally graded half space, Green’s functions are expressed
in terms of one-dimensional infinite integrals. To carry out the numerical integral involving Bessel functions, an adap-
tive Gauss quadrature approach is introduced and modified. The piezoelectric functionally graded Green’s functions
include those in the corresponding elastic functionally graded media as special results with the latter being also unavail-
able in the literature. Two piezoelectric functionally graded half-space models are analyzed numerically: one is a func-
tionally graded PZT-4 half space, and the other a coated functionally graded PZT-4 layer over a homogeneous BaTiO3
half space. The effects of different exponential factors on Green’s function components are clearly demonstrated, which
could be useful in the design and manufacturing of piezoelectric functionally graded structures.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With spatial variation in their compositions, functionally graded materials (FGMs) can be utilized to
provide the desirable thermo-mechanical, piezoelectric, and magnetic properties. As such, applications of
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FGMs can be in very diverse disciplines such as tribology, electronics, and biomechanics (Hirai, 1995;
Markworth et al., 1995; Suresh and Mortensen, 1998; Miyamoto et al., 1999; Rodel, 2003). While the
thermomechanical application of FGM is well known in thermal barrier coatings (e.g., Jarvis and Carter,
2002), that related to piezoelectricity is currently being explored (Xu et al., 1999; Almajid and Taya, 2001;
Almajid et al., 2001). Recent preliminary results on fabrication of piezoelectric FGM (PFGM) mono-
morph, biomorph, and related piezodevices (Almajid and Taya, 2001; Almajid et al., 2001; Chen and
Ma, 2002; Rodel, 2003) have shown clearly the benefit of using PFGMs. Furthermore, couplings among
different phases (electric, mechanical, and even magnetic) are the key factors for future smart, adaptive,
and functional materials and structures (e.g., Dunn and Taya, 1993; Yang and Tiersten, 1997; Newnham
and Amin, 1999).

The special feature of graded spatial compositions associated with FGMs provides freedom in the design
and manufacturing of novel structures; on the other hand, it poses great challenges in numerical modeling
and simulation of the FGM structure. For example, to apply the domain-discretization method (e.g., the
finite element), one may need to develop special elements (Kim and Paulino, 2002a,b, 2003; Santare
et al., 2003; Liew et al., 2003). This could be difficult for the three-dimensional (3D) problem involving
FGMs, but can be extremely useful to complex FGM analysis.

Alternatively, one can employ the boundary element method (BEM) to attack the problems associated
with FGMs. The BEM has the advantage of boundary discretization only; however, it requires that
Green'’s functions for the corresponding FGMs be available. For isotropic elastic FGMs, Giannakopoulos
and Suresh (1997, 1999) derived the surface Green’s functions due to a vertical point force applied on the
surface of the half space. Recently, Martin et al. (2002) and Chan et al. (2004) obtained the analytical
expressions for Green’s functions in both 3D and 2D anisotropic elastic FGMs where the material prop-
erties vary exponentially in a fixed direction, whilst Wang et al. (2003) solved the symmetric problem of a
vertical point force in a transversely isotropic FGM half space. Certain thermal and heat conduction
problems in FGM media have been also solved using the BEM method (Sutradhar et al., 2002; Gray
et al., 2003; Berger et al., in press). To the best of the authors’ knowledge, however, no Green’s function
has been derived so far for a layered elastic FGM, not to mention Green’s function for the corresponding
PFGM.

This paper is therefore to derive the 3D Green’s functions for multilayered and transversely isotropic
PFGM half spaces. First, by virtue of the Cartesian and cylindrical systems of vector functions and the
propagator matrix method (Gilbert and Backus, 1966; Pan, 1989a,b; Pan, 1997), we obtain the layer solu-
tion and propagator matrices in the transformed domain, which are independent of the systems of vector
functions. Then, we propose a propagating approach so that the propagator matrices can be multiplied di-
rectly and efficiently. Finally, we calculate the physical-domain Green’s functions by introducing and mod-
ifying an adaptive Gauss quadrature (Chave, 1983; Lucas, 1995). Green’s functions presented in this paper
include those for the corresponding elastic FGM media as special results. This paper is organized as fol-
lows: In Section 2, we state the problem and the governing equations. In Section 3, the general layer solu-
tion and propagator matrices are derived in the transformed domain. While the source functions are given
in Section 4, Section 5 presents Green’s functions in the transformed domain. In Section 6, integration issue
is discussed on obtaining the physical-domain Green’s functions. Numerical examples are provided in
Section 7 and conclusions are drawn in Section 8.

2. Problem statement and governing equations
Let us consider a structure made up of p parallel, transversely isotropic PFGM layers lying over a trans-

versely isotropic PFGM half space. The layers are numbered serially with the layer at the top being layer 1
and the last layer p, which is just above the half space (Fig. 1). We assume that in each layer the PFGM has
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Fig. 1. Geometry of a PFGM multilayered half space. Both vertical global (z) and local ({) coordinates are attached to the layered half
space.

a locally varied microstructure and follows an exponential variation in the vertical direction, i.e., e, where
{ is the local vertical coordinate (Fig. 1). While the exponential factor n = 0 reduces to the homogeneous
material case, different variations in the vertical direction can be approximated using different exponential
functions (i.e., with different ). Furthermore, for convenience of derivation, we employ two sets of coor-
dinates in the paper. We place the global Cartesian and/or cylindrical coordinates on the surface with the z-
axis pointing into the layered half space. The kth layer is bounded by the interfaces z = z;_j, z;. As such,
zx_1 1s the coordinate of the upper interface of the kth layer, and z, that of the lower interface. It is obvious
that zo = 0 and z, = H, where H is the depth of the last layer interface. In each layer, we also place a local
vertical coordinate { (Fig. 1 for the kth layer), with the starting point at the upper interface of the layer.
Thus, the local coordinate { can be treated as the distance from the upper interface of the layer. Obviously,
for the kth layer with a thickness /i, the relation between the local and global coordinates is { =z — z;_;
(0 < T Iy).

For transversely isotropic PEGMs, we have in each layer, the following governing equations: '

(1) Equilibrium equations

0 +fi =0, (2.1)

Di; —q=0, (2.2)

where ¢;; and D; are the stress and electric displacement, respectively; f; and ¢ are the body force and electric
charge density, which will be replaced later on by a concentrated force and point charge density. In this
paper, summation over repeated subscripts is implied, with a subscript comma denoting partial differenti-
ation with respect to the coordinates (i.e., x; = X, X, =y, X3 = 2).

! We choose the Cartesian system of vector functions; the results in the corresponding cylindrical system of vector functions are
given in Appendix A.
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(2) Constitutive relations
O = Ci1Yy + Cr2yy, + Ci3y,, — €31 Ex,
0y = CiY + Ciiyyy + Ci3). — €31 Bz,
0 = Ci3)x + Ci37y, + Ci37.. — €33k,

(2.3)
0, = 2Cuy,, — eisE,,
0. = 2C4y,, — erskEy,
Oxy = 2C66)y»
D, = 2ey5y,, + e Ex,
D, =2eisy,. + enk,, (24)

D. = e31(yy + 7)) + 337 + enkl,

where y;; is the elastic strain and E; the electric field; Cy;, e;; and ¢; are the elastic moduli, piezoelectric coef-
ficients, and dielectric coefficients, respectively. We remark that the solutions derived in this paper include
those for the corresponding elastic FGM media as a special case (by setting the piezoelectric coefficients e;;
to zero).

(3) Elastic displacement-strain and electric potential-electric field relations

yij = 05(u,,, + uj,,-), (25)

E; = _(l’),m (26)

where u; and ¢ are the elastic displacement and electric potential, respectively.
For each PFGM layer with an exponential variation in the z- (or {-) direction, the material coefficients in
Eq. (2.3) can be described by

Ca(0) = Ce™s  ea(l) = ege’s  eall) = e’ (2.7)
where 7 is the exponential factor characterizing the degree of material gradient in the z- (or {-) direction,
and the superscript 0 is attached to indicate the z-independent factor in the material coefficient. Again,
n = 0 corresponds to the homogeneous material case.

For transversely isotropic PFGM with the material symmetry axis along the z-axis, the case considered
in this paper, the PFGM coefficients in constitutive relations (2.3) and (2.4) can be expressed as

[Ch C, Cy 000 0 ]
e, ¢ 0 0 0
¢, 0 0 0
€] = e (2.8)
¢, 0 0
Sym cl, 0
. (€l = C1y)/2]
0 0 0 0 & 0 £ 0 0
=10 0 0 &5 0 0| [fJ=]0 & 0 | (2.9a,b)

0 L0 L0 0
ey e e; 0 0 0 0 0 &y
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The derivation of Green’s functions will be given in terms of the Cartesian system of vector functions
(Pan, 1989a,b):

L(xv% @, ﬁ) = ezS(x»% o, ﬁ)a

M(x,y; o, ) = (.0, + €,0,)S(x,y; 0, B), (2.10)
N(x,y; 0, B) = (ex0, — €,0:)S(x,y; 0, B)

with
Sy, f) = e (2m), (2.11)

where ey, e,, and e. are the unit vectors along the x-, y-, and z- (or {-) axes, respectively; o and f§ are the
transformation variables corresponding to the two horizontal physical variables x and y. There are two
important features associated with this system of vector functions: (a) To find the plane strain deformation
in the (x, z)-plane, one needs only to replace 2 with v/2n and S with 0, respectively. (b) While the solution
in terms of the L and M vectors is contributed to the dilatational deformation, that of the NV vector is to the
rotational part. Corresponding to the dynamic counterparts, the L and M part is related to the Rayleigh
wave while the N part to the Love wave. In this paper we name the solution associated with the L and
M vectors as the LM-type solution and that associated with the N vector as N-type solution.
We further add that the scalar function S satisfies the following Helmholtz equation:

o’'s oS,

T 2.12

a2 + e +48S=0 (2.12)
with

A=1/( + B). (2.13)

3. General solution and propagator matrix of each layer

In order to derive the general solution for each layer, say layer k, we use the local vertical coordinate {
instead of the global vertical coordinate z. We first express the elastic displacement, electric potential, trac-
tion, electric displacements, body force, and electric charge density in terms of the Cartesian system of vec-
tor functions (2.10):

e 0= [ / UL (OL(x,3) + Un(OM(x,) + U(ON(x.y)] dadf, (3.1)
d(x, 3, ¢ // S(x,y)dodp, (3.2)
(05.0) = ot + 0, ot = [ [ IO + TulOMc) + TN dodf, (33
Dyt = [ / DL(OL(r.) + Du(OM(x,) + Dy(ON(x. )] dad (3.4

Flot / / FLOL(,Y) + Fa(OM(x,y) + Fy(ON(x, )] dudp, (3.5)
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. // 0(0)S(x,y) dudp.

(3.6)

We now take the derivatives of the elastic displacement (3.1) and electric potential (3.2), and substitute the
results into the constitutive relations (2.3) and (2.4). The elastic stress and electric displacement can thus be

expressed in terms of the Cartesian system of vector functions, as (omitting the integral sign):

62 62 62 62 dU d@
Jxx:|:C(1)1(UM62+UN66)+C?2(UM@2 UNaa)-l-Cn a + 31dC:| WCS,
o’ o’ o’ o’ v, =, do]
o = [Ch(Ung Una ) + € (Vg Uy ) + b g+ 4 s

¥ @ du do] .
0. = C?3UM<a 2+6_> cl, dCL+€33 d{} e'"s,
:l '1‘=S

o duy o dU
_ 0 M _ N
0y, = |Cyy (UL +— al _ay —d§ _ax

\/\/
+

dy
0 dUu dU
0 M N 0
xz — P Wk
’ _C44<Ua Tdr ax dC a éis a]e
o G
0 y[S
Oxy = C66[2UMaay+ N< 5 — ax2 } 7S
[ (dUy @  dUy 8 0 .
b= (dC & o 6x> oo } 5,
dUy 0 dUy © 0
D, = =N nl
’ (dC ot ax a) an e } 5
[ o dUu do] .
D, = _eg]UM<6x2+6y2> +e(3)3 dCL 833 dC]e’“S.
Comparing (3.7¢,d,e) to (3.3), we obtained
dU d(D .
Ty = [CL (UL + dsjéM) + e‘l’sds} v,
dUu
TN_C24 dCN ’1s

We now compare the {-component of the electric displacement in (3.4) to (3.8c). This gives us

o AU o do@
DL = <—)u 631UM + 633 dCL ;3 dC)

(3.7a-f)

(3.8a—c)

(3.9a—c)

(3.10)

Substituting Eq. (3.7) into Eq. (2.1), with the body force f being replaced by (3.5), we further found

dr
d_gL*) Ty +FL =0,
v, , do dr
( PCO Uy + O —F a e ¢ dg) m+d—gM+FM 0,
dTy

dC )2C26UN6VIZ+FN—O

(3.11a—)
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Similarly, substitution of (3.4) into (2.2), also making use of (3.6), yields

dD, dU »
T (v e+ et 0 -0 (3.12)
In (3.11) and (3.12), the expansion coefficients F;, F,;, Fy, and Q are associated with the body force and
electric charge density in the kth layer.

3.1. N-type solution
It is observed from (3.9) to (3.12) that the N-type solution is independent of the rest. This is one of the

advantages of using the system of vector functions. Furthermore, the N-type is independent of the electric
quantities, i.e., it is purely elastic, with the coefficient equation being

B~ | s w0 [0] G.13)
where

[E™ (O] = [Un(0), Tw(0) /2] (3.14)
An easy and concise way to solve (3.13) is to introduce temporarily the following vector:

[EY(0)] = [Un(0), Tx(Oe ™ /2], (3.15)
in terms of which, Eq. (3.13) becomes

[EY ] =4 626)6 1_/;2; [E™] - [ FNe(—)"C / J' (3.16)

The homogeneous solution of (3.16) can be easily found as (Pan, 1989a)
[E™] = [Z"(O]IK"], (3.17)

where [K"]is a column coefficient matrix of 2 x 1 with its elements to be determined by the continuity and/
or boundary conditions, and [Z({)"] is the solution matrix with elements as

et e
AL R N (3.18)
S1e”s §retst
where
—n/iE /(1) +4C ) CY
S12 = / \/( /” e/ 44; 512 = 512Cy;- (3.19a,b)

2

We remark that the two eigenvalues s; and s; in (3.18) and (3.19) are arranged in such a way so that the real
part of s, is less than zero.

With the general solution (3.18) for the kth layer, one can derive the corresponding propagating relation,
which relates the expansion coefficients Uy and Ty at the upper interface to those at the lower interface of
layer k. Using the global vertical coordinates z;_; ({ = 0) and z; ({ = &) in (3.17), and evaluating it at the
upper and lower interfaces gives

[E” (z-1)] = [a" (2)][E” (21)], (3.20)
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where z;_; and z, are the depths of the upper and lower interfaces of layer k. In (3.20), the propagator ma-
trix [a], also called layer matrix or transfer matrix, is expressed as

o1
= e ] B2
with
(e %) = diag[ et e-huh ], (3.22)
[B] = [; Slz] (3.23)

We point out that subscript & is also added to the eigenvalue s, thickness /, and exponential factor 5 of the
layer to indicate that these quantities are associated with layer k.

We further remark that the solution and propagator matrices in terms of the cylindrical system of vector
function are exactly the same as (3.18) and (3.21), respectively. Therefore, finding them for one system gives
those in the other system. This feature also gives certain numerical advantages when programming these
equations.

3.2. LM-type solution

For this type of deformation, the elastic and piezoelectric fields are coupled together, and from equations
(3.9) to (3.12), a compact form of the equation can be recast into

[ULa UM7 TLv TMa cp?DL]f{ = [A][ULv UMa TL7 TMa ¢5DL]I + [07 07 _FL7 _FMa Oa _Q]lv (324)
where the nonzero elements of the 6 X 6 matrix [4]is given in Appendix B. It is remarked that all the diag-

onal elements of [4] are zero, a feature that will be used soon.
We now temporarily introduce the following vector:

[E'] = Uy, AUy, Tre™™ J2, Tye ™, ®,Dre " /)", (3.25)
Then (3.24) becomes
[E"] = AIW][E] + [F], (3.26)

where the force expansion column vector is
[F} = [07 07 _FLeiﬂz//lﬂ _FM87’7C7 07 _Qe_n/;//l]t' (327)

The nonzero elements of the 6 x 6 matrix [W]in (3.26) is given in Appendix C. It is noticed that matrix [W]
is independent of the vertical coordinate z or {, but is a function of parameters # and 4.
In order to find the homogeneous solution of (3.26), we assume that

[E*(0)] = [ble™. (3.28)

Substituting (3.28) into (3.26) and noticing that all the diagonal elements of [W] are zero gives the following
6-dimension eigenequations for the corresponding homogeneous part of (3.26)

{w] —viI]}[b] =0, (3.29)

where [I] is the 6 X 6 identity matrix.

We point out again that the eigenvalues and their corresponding eigenvectors of (3.28) depend on the
integral variable A and the FGM exponential factor 5. Therefore, these eigenequations need to be solved
for different # and for each integration point A.
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Assuming that the 6 eigenvalues v; are distinct, the general solution corresponding to the homogeneous
part of (3.26) is found to be

[E*(0)] = [Z(D][K], (3.30)

where [K]is a 6 X 1 coefficient matrix with its elements to be determined by the interface and/or boundary
conditions, and

[Z(0)] = [Bl(e"™) (3.31)
with

(%) = diag[eMs, o5, P58 8 st ], (332)

[B] = [b1,b>, b3, by, bs, bs). (3.33)

It is noted that the real parts of the first three eigenvalues are positive and those of the remaining three are
negative.

In order to use the propagating relation for the multilayered structure, we introduce the following set of
coefficients:

[E) = [Uy, AUy, T/ 2, Tui, @,D /], (3.34)
which is related to [E*] as

[E] = (P)E"], (3.35)
where (P) is a 6 x 6 diagonal matrix defined as

(P) = diag[1,1,e",e", 1,¢"]. (3.36)

The propagating relation in terms of the coefficient vector [E] of kth layer, which connects the values at the
global coordinate z;_; ({ =0) to those at z; ({ = ), is found to be

[E(ze-1)] = [a][E(z0)], (3.37)
where

[a] = [Bl(e ") [B]"(Q) (3.38)
is the propagator matrix for the LM-type deformation, and

<efiv*hk> _ diag[efﬂ,vlhk’efivzhk’e*/lv_ghk,e*/“mhk’efﬂu\fshk7efit'(,hk], (339)

(Q) = diag[1,1,e Wk e M 1 e M. (3.40)

Similar to the N-type solution, the solution and propagator matrices in terms of the cylindrical system of
vector functions are exactly the same as those given by (3.31) and (3.38). We emphasize again that this fea-
ture possesses certain numerical advantages when programming these equations. It is further noted that in
solving the eigenequation (3.29), we have assumed that all the eigenvalues are distinct. Should repeated
eigenvalues occur, a slight perturbation on the material properties can be used to make all the eigenvalues
distinct with neglected errors so that the solution developed in this paper can still be directly used.

4. Source function in transformed domain

In order to derive Green’s functions in the layered system, we also need to specify the point source. We
assume, without loss of generality, that in the kth layer, there is a point-force/point-charge density located
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along the z-axis at the depth z = d or locally at { = Ay (Fig. 1). Therefore, in terms of the local vertical
coordinate {, along with the two horizontal coordinates, the point force and point charge density can be
expressed as

fi(x,3,0) = 6(x)6()o( — huar )i, (4.1)
—q(x,»,0) = 6(x)06(»)0({ — hwr), (4.2)

where n; is the direction cosines of the point force. Expanding these expressions using (3.5) and (3.6), we
found the expansion coefficients as (Pan, 1999)

n;
Fr —2—n5(C—hk1),

o+ 1,
Fy = %5(4’ — i), (4.3)
Fy= xl;t (L — hun),
—1
0= %5@ — hu). (4.4)

The expansion coefficients for the corresponding 2D plane strain deformation can be obtained from (4.3)
and (4.4) by replacing 2n with v/2r and f with 0, respectively.

The concentrated force and electric charge density will induce discontinuities in the expansion coeffi-
cients of the traction and normal electric displacement component, which are found to be

—n,
AT, = Ti(h +0) — Tr(hy —0) = e
T
n.o + n,
ATMETM(hkl—f—O)—TM(hk]—O):—'iZ}ﬁ, (45)
21
n.fp — n,o
ATy ETN(hkl +0) _TN(hkl —O) =7,
21
1
ADL = DL(hkl —+ O) — DL(hkl — 0) = E (46)

5. Green’s functions in transformed domain

For a source situated at depth z = d in layer k, we divide the source layer into two sub-layers, k1 and k2,
with identical properties. Because of the source, some of the components in functions [E(z)] and [E™(z)] are
discontinuous across z = d, as we have obtained in the previous section. In general, the discontinuities can

be defined as
[AELZ [E“,ﬁ"” - [Em]gd)], (5.1a.b)
[AE"] = [E},(d)] — [E (d)],

with their discontinuity components being given by (4.5) and (4.6).
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Propagating the solutions from z = d — 0, which is just above the source, to the surface z = 0, we obtain

[E(0)] = [ai][a2] - - [ani][Ea (d))],
2ab
[EY(0)] = [a)][a)] - - - [a}][E}y ()] (322,0)

Similarly, propagating the solutions from the half space z = H to z = d + 0, which is just below the source,
we have

[Ea(h)] = la]lain] - - [a)[Z,(H)][K,],

(5.3a,b)
[Ea(h)] = [a)lay ] [a)](Z; (H)][K ]
with the undetermined coefficients having the structure as
K, =10,0,0, %, x, x !
K=l ] (5.4a,b)

K] =10,4]',

where the symbol “*’ represents coefficient to be determined. The structure of (5.4) is chosen to satisfy the
requirement that the solution vanishes when z approaches + oco. From (5.1), (5.2) and (5.3), we find

[E(0)] = [G]K,] - [R],

N N[N N (5.5a,b)
[E7(0)] = [G7][K,] — [R"],
where
(G] = [ai][ar] - - - [a,)[Z,(H)],
G"] = [@][@)] - [&)][Z}) (H)], (5.6a.d)
[R] = [a][ar] - - - [ax 1] [an |[AE],
[

}
R"] = [a))l@)] - [a ] [ay |[AE™).

Using the boundary conditions at z = 0, the unknown coefficients in [K,] and [szv ] can be determined. As
an example, we assume that the boundary condition at the surface of the layered half space is traction-free
insulating or traction-free conducting. Then the corresponding constraints for the expansion coefficients
are, respectively,

(5.7a,b)

In either case, we have four conditions to determine the four unknowns in [K,] and [Kg |. After the un-
known coefficients in [K,] and [Kﬁ’ | are determined, the expansion coefficients at any depth (e.g., for
z = din layer k, i.e., z;_; < z < zi) can be obtained exactly as

[E@)] = an(z = ze)lac] - - [@)][Z, (H)][K,],

BV (@) = [ah(z — 2 )al ] [@][2Y (1)K, (-82.0)

As discussed in Pan (1997) and Yue and Yin (1998), overflow may occur from multiplication of matrices in
Egs. (5.6) and (5.8). This can be overcome by factoring out the exponentially growing factor in the elements
of the propagator matrix and propagating the matrix either forward or backward, depending on the relative
location of the source and field points. Since in the modified propagator matrices, no element is exponen-
tially growing, there will be no overflow problem for a multilayered half space having any number of layers
with any thickness for each layer.
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6. Physical-domain solutions

Green’s functions obtained above in the transformed domain need to be integrated numerically to find
the physical-domain solutions. Since in terms of the cylindrical system of vector functions, the individual
components of Green’s functions will be in the cylindrical coordinates. We found that, in order to find
all the elastic and electric quantities (elastic displacements, strains, and stresses; electric potential, electric
fields, and electric displacements) due to three point forces and a negative point charge density, only 38 inte-
grals need to be evaluated.

It is further noted that the integrands in the infinite integrals for Green’s functions involve Bessel func-
tions that are oscillatory and go to zero slowly when their variable approaches infinity. Thus, the common
numerical integral methods, such as the trapezoidal rule or Simpson’s rule, are not suitable for such inte-
grations. On the other hand, numerical integration of this type of functions via the adaptive Gauss quad-
rature (Chave, 1983; Lucas, 1995) has been found to be very accurate and efficient. We therefore have
adopted and modified this algorithm to the evaluation of Green’s functions in the PFGM multilayered half
space.

Let us express the infinite integral for each Green’s function as a summation of partial integration terms:

+00 N Tnt
/0 f2) ()i =" /) £ (2 2)d w(2r)dA. (6.1)

In each subinterval, a starting 3-point Gauss rule is applied to approximate the integral. A combined rel-
ative-absolute error criterion is used to check the results. If the error criterion is not satisfied, new Gauss
points are added optimally so that only the new integrand values need to be calculated. This procedure con-
tinues until the selected error criterion is satisfied (Chave, 1983; Lucas, 1995). In the numerical analysis pre-
sented below, we have set the relative and absolute errors, respectively, at 1073 and 1074,

Another important issue on the PFGM Green’s functions we should remark is their singularity behavior,
and this is required in future implementation of these Green’s functions into any BEM program for
PFGMs. Although the expression for the total PEFGM Green’s function near the singular (source) point
could be very complicated even for a single PFGM space, the singular part near the source point turns
out to be exactly the same as that in the corresponding no-PFGM space. In other words, Green’s function
for a single PFGM space can be always expressed as a summation of two parties near the singular point,
just as for the corresponding 3D and 2D elastic FGM space (Martin et al., 2002; Chan et al., 2004):

G(x;x') = e "G (x; X)) + G5 (x; X)), (6.2)

where 5 = ne., x and x' are, respectively, the field and source point, G° Green’s function corresponding to
the no FGM space, and G® the additional grading term, which is a bounded and well-behaved function of
the distance between the field and source points. Since the grading term G* is bounded as |x — x’| — 0, the
singularity is only contained within G°. Therefore, in the numerical calculation of the PEFGM Green’s func-
tions, the subtraction-addition approach that we proposed for the layered system (Pan et al., 2001) can be
utilized to handle the singularity issue easily, no matter if the system is layered, FGM, or layered PFGM.

The original program was written for one Hankel transform only. In our case, evaluation of 38 infinite
integrals is required in order to obtain all the elastic and electric components. Thus, direct application of the
original adaptive Gauss quadrature would result in intensive computation because of the multiplication of
the propagator matrices involved. However, we noticed that the integrand f{4, z) in (6.1), which represents
one of the expansion coeflicients in (5.8), is actually the result of the multiplication of the propagator matri-
ces. Since for a given layered half space, the propagator matrix depends only upon the integral variable /,
the original program can therefore be modified in such a way that for all the elastic and electric compo-
nents, the multiplication of the propagator matrices needs to be evaluated only once for a given Gauss
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quadrature point . Such a modification to the original adaptive Gauss quadrature saves substantial com-
putation time when calculating all Green’s components (Pan, 1997).

7. Numerical results and discussion

Before applying our Green’s functions to the multilayered PFGM system, we first checked the reduced
purely elastic and piezoelectric layered cases (i.e., the exponential factor 1 = 0). We found that the results
from the present multilayered PFGM Green’s functions are exactly the same as those from previous solu-
tions (Pan, 1997, 2002; Pan and Han, 2004).

In our numerical studies, the layered PFGM half space is made of two transversely isotropic piezoelec-
tric materials: One is the poled lead-zirconate-titanate (PZT-4) ceramic, the other is BaTiO3, with their
properties given in Appendix D. Two different models are studied in this paper. The first model is a PFGM
half space made of PZT-4 (Fig. 2). The PFGM half space is under a point force (1 N) on the surface, and
the response is calculated in the vertical plane (y = 0) for x and z varying from 0 to 0.3 m. The second model
is a homogeneous half space made of BaTiO3, coated with a PFGM layer of thickness 0.1 m and made of
PZT-4. The point source is at (0, 0, 0.15 m), and the response is calculated along a surface line from (0, 0, 0)
to (0.3 m, 0, 0) and a vertical line from (0.1 m, 0, 0) to (0.1 m, 0, 0.3 m). For both models, the traction-free
insulating boundary condition is assumed at the surface of the layered half space.

We also point out that all the numerical results presented below are dimensionless. Thus, by multiplying
L (=1 m), we change the coordinate into the dimensional one. In order to obtain the dimensional elastic
displacement, electric potential, stress, and electric displacement (e.g. for stress in N/m? and electric dis-
placement in C/m?), one needs to carry out the following simple multiplication or division (with
C°  =1.66x 10" N/m? and & = 18.6 C/m?):

(i) for the elastic displacement due to a point force, divide the result by CgmL;

(i) for the elastic displacement due to a negative point charge density or the electric potential due to a
point force, divide the result by % L;

(iii) for the electric potential due to a negative point charge density, multiply the result by
C&ax/(egqaxeg‘laxL);

(iv) for the stress due to a point force or the electric displacement due to a negative point charge density,
divide the result by L?;

(v) for the stress due to a negative point charge density, multiply the result by C° _/(e° L*);

max max

(vi) for the electric displacement due to a point force, multiply the result by & /(C° L?).

max max

o Source Point
/ — A j=10 xorr
3t ——— =0
4 —&— -0
FGM PZT-4 =
Half-Space ‘

z(¢{)

Fig. 2. Geometry of the PFGM PZT-4 half space. The variation of the proportional factor e’ in the PFGM half space is shown for
n=-10, =5, 0, 5, 10.
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Fig. 3. Geometry of a coated PFGM layer of PZT-4 over a homogeneous half space of BaTiO;. The variation of the proportional
factor € in the coated PFGM layer of PZT-4 is shown for n = —10, -5, 0, 5, 10.

7.1. Response in the PFGM half space

This corresponds to the first model, which is a PFGM half space made of PZT-4 (Fig. 2). Figs. 4-8 show,
respectively, contours of the horizontal elastic displacement u,, electric potential ¢» horizontal and vertical
stress components g, and ¢.., and vertical electric displacement D, in the y =0 plane due to a vertical
point force of magnitude 1 N applied at the origin. For each physical quantity, five figures are presented
(e.g., Figs. 4a—e) which correspond to the five exponential factors n = —10, —5, 0, 5, and 10. While a neg-
ative exponential factor corresponds to a stiff surface, a positive factor to a soft surface. It can be clearly
observed from these figures that for different exponential factors #, the contour shapes and the magnitudes
of the physical quantity are completely different. Furthermore, either a stiff (Figs. 4a,b, 5a,b for n = —10,
—5) or a soft (Figs. 4d,e, 5d,e for y = 5, 10) surface of the PFGM half space will, in general, correspond to a
relatively large magnitude in the horizontal elastic displacement u, and electric potential ¢, as compared to
the corresponding homogeneous half space (7 = 0). On the other hand, the magnitude of the stresses and
electric displacements increases with increasing exponential factor 7. In other words, the magnitudes of
these Green’s components are smaller in a PFGM half space with a stiff surface (Figs. 6a,b, 7a,b, 8a,b
for n = —10, —5) than those in the corresponding PFGM half space with a soft surface (Figs. 6d,e, 7d.e,
8d,e for n =5, 10).

7.2. Response in the PFGM coated half space

This corresponds to the second model in which the homogeneous half space is made of BaTiO;, coated
on its top is a PFGM layer of thickness 0.1 m made of PZT-4 (Fig. 3). In the numerical examples studied in
this section, the source point is located along the z-axis in the homogeneous half space with coordinates
(0.0, 0.0, 0.15 m) (Fig. 3). The point force has a magnitude of 1 N and negative point charge density has
a magnitude of 1 C.

7.2.1. Surface response in the PFGM coated half space

Figs. 9a—c show, respectively, the horizontal elastic displacement u,, electric potential ¢, and horizontal
electric displacement D, along a surface line (from (0, 0, 0) to (0.3 m, 0, 0)) of the PFGM half space caused
by the vertical point force of 1 N at (0.0, 0.0, 0.15 m). It is observed from Figs. 9b and c that the magnitude
of the electric components (i.e., the electric potential ¢ and horizontal electric displacement D,) decreases
with increasing exponential factor 5. For the horizontal elastic displacement u,, however, the same trend
follows only for the exponential factor # less or equal to zero (Fig. 9a). For 1 > 0, the magnitude of u, in-
creases with increasing exponential factor 5 (Fig. 9a).
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Fig. 9. Variation of the field quantities along a line on the surface (from (0, 0, 0) to (0.3 m, 0, 0)) of the PFGM coated half space for the
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displacement component u, in (a), electric potential ¢ in (b), and electric displacement component D, in (c).

7.2.2. Internal response in the PFGM coated half space

Figs. 10a—d show, respectively, the vertical elastic displacement u., horizontal stress component o,
electric potential ¢, and horizontal electric displacement D, along the vertical line (from (0.1 m, 0, 0)
to (0.1 m, 0,0.3 m)) due to the horizontal point force of 1 N at (0.0, 0.0, 0.15 m). First of all, different
exponential factors # can have a pronounced influence on the responses in the PFGM layer. Second, it
is noted that even though the half space is a homogeneous material made of BaTiOs3, the exponential fac-
tor # within the PFGM coated layer can still effect the responses within the homogeneous half space, in
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(d).

particular in the region close to the interface between the PFGM layer and the homogeneous half space
(Figs. 10a—d). More specifically, compared the horizontal electric displacement D, (Fig. 10d) with the hor-
izontal stress component o, (Fig. 10b), we observe that the electric displacement is more sensitive to the
exponential factor x than the stress does. Finally, it is further noticed that across the source level at
z=0.15m, while the slopes of the vertical elastic displacement u. and horizontal electric displacement
D, are discontinuous (Figs. 10a and d), those of the horizontal stress component o, and electric potential

¢ are continuous (Figs. 10b and c¢).
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Figs. 11a—d show, respectively, the vertical elastic displacement u., horizontal stress component o, elec-
tric potential ¢, and horizontal electric displacement D, along the vertical line (from (0.1 m, 0, 0) to
(0.1 m, 0,0.3m)) due to the negative point charge density of 1 C at (0.0,0.0,0.15m). Similar to the
responses due to the horizontal point force (Figs. 10a—d), the responses in the PFGM layer are substantially
different for different exponential factors 5. Furthermore, the responses in the underlying homogeneous half
space can be also affected by the exponential factor in the PFGM layer (i.e., Figs. 11a and d). In contrast to
the responses due to the point force, however, the slopes of the elastic and electric quantities are all con-
tinuous across the source point at z=0.15m.
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8. Conclusions

In this paper, Green’s functions for transversely isotropic PFGM and multilayered half spaces are de-
rived, which include those for the corresponding elastic FGM media as the reduced case. By virtue of two
systems of vector functions and the propagator matrix method, the Green’s functions in the transformed do-
main are obtained in concise and unified forms. In order to find Green’s functions in the physical-domain,
which are expressed in one-dimensional infinite integrals with Bessel functions as integrands, we introduced
and modified an adaptive Gauss quadrature. Green’s function solutions are then applied to two PFGM
models. One is the PFGM half space made of PZT-4 and the other is a PFGM coated half space where
the coated PFGM layer is again PZT-4 and the underlying homogeneous half space is made of BaTiOs.
The influence of the exponential factor 5 of the PFGM is clearly demonstrated, and could be helpful to
the future design and manufacturing of the PFGM structures. Although we discussed only the sources asso-
ciated with the point force and point charge, the methodology presented in this paper could be extended to
other concentrated sources such as dislocation, eigenstrain, etc. Implementation of the PFGM Green’s func-
tions to the boundary element program should also result in various interesting applications.
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Appendix A. Cylindrical system of vector functions and associated source functions

The cylindrical system of vector functions is defined as (Pan, 1989a, 1997)
L(r,0; 2, m) =e.S(r,0; A,m),

M(r,0; A,m) = <e,.E + ey i) S(r,6;2,m),

or ro0 (A.1)
N(r,0; A,m) = ei—ei S(r, 0; A,m)
yUsA,m) = rrae Oar ,yUsA,m
with
1 .
S(r,0; 2, m) = —=J,,(r)e™, A2
(105 2.m) = =1, i) (A2)

where J,(Ar) is the Bessel function of order m with m =0 corresponding to the axial symmetric
deformation.

The cylindrical system of vector functions is an extension of the Hankel transform and can be directly
applied to a vector function. Since the cylindrical system (A.1) forms an orthogonal and complete space,
any integrable vector and/scalar function can be expressed in terms of it. In particular, the elastic displace-
ment vector, electric potential, traction vector, electric displacement vector, body force vector, and the neg-
ative charge density can be expressed as

0.0 =Y [ 0UOL00) + Un(OM(0) + Uy (ONG 020, (A3)

60,0 =3 [ oS00 (A4)
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t(r,0,() =0.e, + 0o+ o€, = Z /O+OC[TL(C)L(V, 0)+ Tu(OM(,0) + Ty(ON(r,0)]AdL,  (A.5)

D(r,0,0) = /0 - [DL(OL(r,0) + Dy (O)M(r, 0) + Dy (ON(r, 0)]2d4, (A.6)
fr0.0=>" /0 - [FL(OL(r,0) + Fy(O)M(r,0) + Fy(ON(r, 0)]2d, (A7)
—q(r,0,0) = /0 - 0()S(r, 0)2.da. (A.8)

Assume that there is a point force and a negative point charge density applied along the vertical axis in layer
k at z=d (or { = hy,), we then have, in the cylindrical coordinates,
o(r)o()o( —h
fir0.0) = 22O =), (A9)

r

_g(r0,0) = 6(r)0(0)5(¢ — hu)’ (A.10)

7

where (n,, n,, n.) are the (x, y, z)-direction cosines of the unite force vector in the space-fixed Cartesian
coordinates, with x- and y-directions being taken, respectively, along 6§ = 0 and 6 = nt/2 of the cylindrical
coordinates.

Substituting (A.9) and (A.10) into (A.7) and (A.8) respectively, one can show that the expansion coef-
ficients of the point force and negative point charge density are, respectively

n
Fr=——6(=hn); m=0,
L= o (C— i)
Fn, +in,
Foy= = s ) omo= 1, ,
in,tn
Fy= T s ) omo= £,
N T O )
-1
= S =) m=o. A12
Q \/ﬁ (C kl) m ( )

These point force and negative point charge density will cause the following discontinuities in the expansion
coefficients of the traction vector and normal electric displacement component:

—n,

ATLETL(hkl+0)_TL(hkl_0):ma m:0,
Fn, +in
ATy = Ty (g +0) — Ty (b — 0) = ——=L; m = +1, .
M w (i +0) m (i — 0) YT (A.13)
in, + n,
ATy = Tyl +0) — Ty (b — 0) = = 2. =+,
N N( kl ) N( kl ) 2/1\/2—1_[ m
1
ADL = DL(hkl + 0) — DL(l’lkl — O) = — m=0. (A14)

vers
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Appendix B. Nonzero elements of coefficient matrix [A4] in Eq. (3.24)

A = (5,00 + e5e8)) /A A = dhe /A Aig = e /A
A = =15 Aoy =e " [Cly;  Aos = —els/Cly; Az = 25

A = )‘Z{C(l)l - [C?3(3(3)3C(1)3 +e,€3)) + e, (323C?3 33631)]/A}e’7‘
Auy = = (5,00 + €3363,) /A A = (¢5,C55 — €5,CY5) /A

As; = )~2(e(3)3c(1)3 33311)/A As3 = 3336 TEJA; Ase = _Cose_m/A
Aoy = )°ze(1)5/cg4§ Ags = =7 (811 + (615) /C24)67m>

where

A= (623) C(3)3833-

Appendix C. Nonzero elements of coefficients matrix [#] in Eq. (3.26)

Wis = (£,C + €5e8))/A; Wiz = e83/A; Wig = €3 /A;

Wy =—1; Wyu=1/Cly; Wis=—€)/Ch; Wu=-n/k Wy=1
Wi = O — [C3(63:,CY; + e53e3)) + €3, (€5,C1; — C3€3)]/A;

Wi = _(sgsc(l)a +e5e8) /A Wa=—n/l; Wi = (ealcgs - e§3C?3)/A;
Ws= (623C?3 3%331)/A Wss = e33/A Wse = —C(3)3/A;

Wes = 6?5/C24; Wes = _(8(1)1 + (615) /C44)§ Wes = —n/2,

where

A= (933) + Cie5;

Appendix D. Material properties of PZT-4 and BaTiO3

3231

For the PZT-4, the elastic, piezoelectric, and dielectric coefficient matrices are respectively (Pan et al.,

2001)

[1.39 0.778 0.743 0 0 0
0.778 1.39 0.743 0 0 0
0.743 0.743 1.15 0 0 0
(€] = (10" N/m?),
0 0 0 0.256 0] 0
0 0 0 0 0.256 0

0 0 0 0 0 0.306

(D.1)
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0 0 0 0 127 0
[]=| 0 0o 0 127 0 0] (C/m?), (D.2)
|52 52 151 0 0 0

[0.64605 0 0
'] = 0  0.64605 0 (10 Ccv'm™), (D.3)
0 0  0.561975
and for BaTiOs, they are (Pan et al., 2001)
[1.66 077 078 0 0 0 ]
077 1.66 078 0 0 0
o - 078 078 162 0 0 0 (10" N/, D)
0 0 0 043 0 0
0 0 0 0 043 0
L0 0 0 0 0 0445]

o0 0 0 0 116 0
]=] 0 0 0 116 0 0| (C/m), (D.5)
|44 —44 186 0 0 0

r112 0 0
[]=| 0 112 0 | (10°CV'm™M). (D.6)
0 0 126
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